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A B S T R A C T   

Element segregation and consequent phase separation are challenging problems in refractory high entropy alloys 
(RHEAs). In this study, thermodynamic parameters and calculation of phase diagrams (CALPHAD) were 
implemented for RHEA design to suppress segregation and phase separation. A novel non-equiatomic RHEA, 
Ti1(NbMoTa)2W0.5 alloy, was designed with a minimized difference between liquidus and solidus temperatures 
(ΔTl− s) and a wide temperature range between solidus temperature and transformation temperature (ΔTsingle) and 
compared with equiatomic RHEA. As-cast Ti1(NbMoTa)2W0.5 alloy maintained a single-phase body-centered 
cubic (BCC) structure, corresponding to the Scheil–Gulliver model, and segregation of constituent elements was 
suppressed owing to the minimized ΔTl− s. Ti1(NbMoTa)2W0.5 alloy showed excellent strength (approximately 
1100 MPa) and ductility (1.6 times higher than TiNbMoTaW alloy). This study demonstrated a novel approach 
for obtaining single-phase BCC-structured RHEAs with suppressed elemental segregation and phase separation by 
utilizing combined use of ΔTl− s and ΔTsingle as alloy design indexes.   

Main body 

High entropy alloys (HEAs) are a class of materials comprising 
5–35 % of five or more elements at a mixing entropy greater than 1.5R 
(R: gas constant) [1]. HEAs are attracting attention as a next-generation 
material because of their excellent mechanical properties [2,3], corro
sion resistance [4–6], fatigue properties [7,8], biocompatibility [9,10], 
and high-temperature stability [11,12], that originate from four core 
effects represented by the high entropy, lattice distortion, sluggish 
diffusion, and cocktail effects [13]. 

Most studies have focused on HEAs with equivalent compositions, 
where the constituent elements often segregate because of the super- 
multicomponent nature of the HEAs [9,14–16]. The segregation of 
constituent elements hinders the strengthening of the solid solution. It 
also induces phase separation and the formation of intermetallic com
pounds, degrading the inherent properties of the HEAs [17–19]. In 

particular, maintaining a single-phase solid solution over a wide tem
perature range is crucial for refractory HEAs (RHEAs). Recently, 
research on non-equiatomic HEAs has been attracting attention in order 
to improve the characteristics of HEAs. This alloy design effectively 
improved the properties of equiatomic HEAs with higher design flexi
bility [20–23]. In general, thermodynamic parameters and calculation 
of phase diagrams (CALPHAD) have been widely used for HEAs design 
[20,21]. 

This study investigated the alloy design and optimization of the 
composition using thermodynamic parameters and CALPHAD for 
RHEAs by focusing on the difference between liquidus and solidus 
temperatures (ΔTl− s) [24] for suppression of elemental segregation and 
the temperature range between solidus temperature and transformation 
temperature (ΔTsingle) [25] for phase stability. Furthermore, the 
designed alloy was fabricated via arc-melting, and its microstructure 
was investigated and compared with thermodynamic calculation results 
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and simulations. 
In this study, we determined the alloy composition in two steps: 

element selection and composition determination. The constituent ele
ments were chosen from groups 4, 5, and 6 of the periodic table (which 
are classified as refractory materials). The atomic radius of the elements 
was considered first because it significantly impacts solid solution for
mation [26]. Therefore, four elements, Nb, Mo, Ta, and W, were selected 
as the base alloys for realizing a single-phase body center cubic (BCC) 
structure, owing to their close atomic radius differences. Additional el
ements were reviewed to realize HEAs having a mixing entropy (ΔSmix) 
[26] exceeding 1.5R, as shown below: 

ΔSmix = − R
∑n

i=1
xilnxi (1) 

Here, xi is the mole fraction of the i-th element. Supplementary 
Fig. S1 shows (a) the pair enthalpy, (b) atomic radius, and (c) melting 
point of the constituent elements, which were examined to elucidate the 
interaction between each element. Among the elements in groups 4, 5, 
and 6, Ti has an atomic radius close to that of Nb, Mo, Ta, and W. The 
pair enthalpies between Ti and the elements are moderately close to 
zero, indicating a high probability of solid solution formation. More
over, Ti exhibits the smallest valence electron concentration (VEC) value 

of 4. The VEC determines the ductility of BCC-structured HEAs; the 
smaller the VEC, the higher the ductility [27]. Furthermore, Nb, Mo, Ta, 
and W are commonly employed as BCC-phase-stabilizing elements in 
Ti-based alloys. Hence, a Ti-Nb-Mo-Ta-W alloy system was selected for 
this study. 

The present strategies to obtain a solid solution and a stable single 
BCC phase involve minimizing ΔTl− s and maintaining greater ΔTsingle. It 
is expected to suppress segregation because solidification begins and 
ends within a narrow temperature range [24] and demonstrates good 
phase stability at high temperatures [25]. Thermodynamic parameters, 
including mixing enthalpy (ΔHmix) [26], atomic radius mismatch (δ) 
[26], and melting point mismatch (ΔTm) [25], were considered for 
predicting the formation of a solid solution. Details of the thermody
namic parameters used in this study are described in Appendix 2 of the 
Supplementary information. ΔHmix represents the chemical compatibility 
between the constituent elements, with values close to zero indicating 
favorable conditions for the formation of solid solutions [26]. Both 
ΔHmix and δ are crucial factors in predicting the formation of solid so
lutions in HEAs [28,29]. ΔTm represents the extent of elemental in
teractions. The smaller the ΔTm, the more readily the elements can be 
integrated into a lattice [30]. When its value is less than 16 %, a stable 
phase is maintained even at high temperatures [25]. Hence, to obtain a 
stable single BCC phase, we explored conditions that simultaneously 

Fig. 1. (a) ΔHmix, (b) δ, and (c) ΔTm represented as functions of ΔSmix/R. The black dots indicate different alloy compositions. The red dots indicate the compositions 
with ΔSmix ≥ 1.5R, which meet the conditions for HEA formation. The red rectangles denote the regions associated with indices S1 (ΔSmix ≥ 1.5R and −

5 ≤ ΔHmix ≤ 1), S2 (ΔSmix ≥ 1.5R and δ ≤ 6.6), and S3 (ΔSmix ≥ 1.5R and ΔTm ≤ 16). (d) ΔTl− s, (e) VEC, and (f) ΔχAllen as functions of ΔHmix for the combinations 
that simultaneously meet the conditions of S1, S2, and S3. Equilibrium phase diagrams for the (g) TiNbMoTaW and (h) Ti1(NbMoTa)2W0.5 alloys. 
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satisfied the following thresholds: ΔSmix ≥ 1.5R, − 5 ≤ ΔHmix ≤ 5, 
δ ≤ 6.6, and ΔTm ≤ 16. In this study, to suppress the segregation of the 
constituent elements, they were categorized into three groups based on 
their melting point, as can be observed in the composition Tix(NbMo
Ta)yWz in atomic % (at.%). 

The thermodynamic parameters of the Tix(NbMoTa)yWz were 
calculated and are presented in Fig. 1, wherein (a), (b), and (c) show the 
values of ΔHmix, δ, and ΔTm as functions of ΔSmix, respectively. In this 
study, 29,790 composition combinations were evaluated. The black dots 
indicate the conditions where ΔSmix < 1.5R, whereas the red dots 
indicate the conditions satisfying the criteria ΔSmix ≥ 1.5R. In addition, 
the areas enclosed in red squares, denoted as S1 (ΔSmix ≥ 1.5R, −

5 ≤ ΔHmix ≤ 5), S2 (ΔSmix ≥ 1.5R, δ ≤ 6.6), and S3 (ΔSmix ≥ 1.5R, 
ΔTm ≤ 16), represent the conditions corresponding to a high probability 
of solid solution formation. Fig. 1 (d), (e), and (f) show the values of 
ΔTl− s, VEC [31], and electronegativity (ΔχAllen) [32], respectively, for 
the compositions simultaneously satisfy S1, S2, and S3. The values are 
plotted as functions of ΔHmix. From these results, we identified Ti1(Nb
MoTa)2W0.5 alloy as the composition corresponding to the smallest 
ΔTl− s as well as VEC and ΔχAllen. ΔχAllen is a relevant factor in predicting 
intermetallic-compound formation, and solid solution formation is 
facilitated when ΔχAllen is below 6 % [32]. Fig. 1(g) and (h) show the 
equilibrium phase diagram of the TiNbMoTaW and Ti1(NbMoTa)2W0.5 
alloys, respectively. The calculations were performed using the 
Thermo-Calc software [33] with the TCHEA5 database. Both alloys 
exhibited a high melting point above 2500◦C and maintained a large 
ΔTsingle. Hence, they are anticipated to demonstrate high phase stability 
even at high temperatures. It should be noted that Ti1(NbMoTa)2W0.5 
alloy exhibited greater ΔTsingle and smaller ΔTl− s than TiNbMoTaW 
alloy. The thermodynamic parameters for each composition are listed in 
Table 1. 

Fig. 2(a, b) show the non-equilibrium solidification simulation re
sults obtained using the Scheil–Gulliver model. The dotted lines repre
sent equilibrium solidification, assuming infinitely fast diffusion in both 
the liquid and solid phases. The solid red lines indicate the 
Scheil–Gulliver model, which assumes infinitely fast diffusion in the 
liquid phase but no diffusion in the solid phase [34,35]. Both alloys 
exhibit a single BCC phase during non-equilibrium solidification. 
TiNbMoTaW alloy exhibits a significant difference between the equi
librium and non-equilibrium states as the solidification progresses. 
However, in Ti1(NbMoTa)2W0.5 alloy, the difference between the equi
librium and non-equilibrium states remains small even as the solidifi
cation progresses, indicating an effective suppression of segregation. 
Moreover, compared to TiNbMoTaW alloy, Ti1(NbMoTa)2W0.5 alloy 
exhibits a notably smaller ΔTl− s. Fig. 2(a2, a3) and (b2, b3) show the 
compositional changes of the constituent elements in the liquid and solid 
phases during the non-equilibrium solidification of both alloys, respec
tively. In both alloys, the concentrations of high melting point elements 
(W and Ta) reduce during the initial stages of solidification in the liquid 
phase (Fig. 2(a2, b2)). This is because the high melting point element 
solidifies first due to the difference in melting point, forming a dendrite 
region. In the late stage of solidification, relatively low melting point 
elements (Ti and Nb) maintain a high mole fraction in the liquid and 
form an inter-dendrite region. Similarly, in the solid phase, the 
early-stage-solidified region exhibits a higher concentration of Ta and 
W, whereas the later-stage-solidified region displays a higher concen
tration of Ti and Nb (Fig. 2(a3, b3)). These results are consistent with the 
results of the distribution coefficient calculated at the liquidus 

temperature in the equilibrium state (Supplementary Table S1). The 
equilibrium distribution coefficient (k) can predict the segregation ten
dency and it was calculated using Thermo-Calc software. The k of Ta and 
W were above 1, indicating enrichment in the dendrite region, whereas 
the k of Ti, Nb were below 1, indicating enrichment in the inter-dendrite 
region [36,37]. However, the k-value of Ti1(NbMoTa)2W0.5 alloy was 
closer to 1 than that of TiNbMoTaW alloy, indicating the suppression of 
segregation in Ti1(NbMoTa)2W0.5 alloy. 

Based on the alloy design, we fabricated TiNbMoTaW and Ti1(Nb
MoTa)2W0.5 alloys via arc-melting. Details of the experimental methods 
are provided in Appendix 1 of the Supplementary information. Fig. 3(a) 
shows the X-ray diffraction (XRD) patterns, revealing the presence of a 
single BCC phase in both alloys, which is consistent with the non- 
equilibrium solidification simulation results (Fig. 2). From the XRD 
analysis, the lattice constants (a) of TiNbMoTaW and Ti1(NbMoTa)2W0.5 
alloys were determined to be 0.322 and 0.324 nm, respectively. Also a 
were calculated using Vegard’s law based on the results of energy 
dispersive X-ray spectroscopy (EDS) analysis (Table 2) of the dendrite 
and inter-dendrite regions of both alloys (Supplementary Table S2). 
Only Ti1(NbMoTa)2W0.5 alloy, the a measured by XRD and the calcu
lated by Vegard’s law at the dendrite and inter-dendrite regions were 
consistent (aD=aID=0.324 nm) due to the suppressed segregation. Both 
alloys showed a doublet of the peak, which was attributed to the 
decomposition of Kα1 and Kα2 X-rays of the Cu target and not the for
mation of an additional phase. This can be seen from the fact that the 
intensity of the Kα1 peak is approximately twice that of the Kα2 peak. 
Fig. 3(c1, d1) show scanning electron microscopy-backscattered elec
tron (SEM-BSE) images of the cross-sections of both alloys. Fig. 3(c2–c6, 
d2–d6) show the elemental mapping results of Ti, Nb, Mo, Ta, and W. 
The images reveal a dendrite structure comprising light-gray dendrite 
regions and dark-gray inter-dendrite regions. Both alloys show Ta- and 
W-rich phases with relatively high melting points in the dendrite region 
and Ti-, Nb-, and Mo-rich phases with relatively low melting points in 
the inter-dendrite region. Fig. 3(b) shows the partition coefficient K =

CD/CID for the constituent elements, where CD and CID are the average 
concentrations (at.%) in the dendrite and inter-dendrite regions, 
respectively. This has been widely used for quantitative segregation 
evaluation [38–40]. K > 1 and K < 1 indicate abundant elements in the 
dendrite and inter-dendrite regions, respectively (Table 2). In Ti1(Nb
MoTa)2W0.5 alloy, K remains at approximately 1 for all elements, 
showing effective segregation suppression compared to TiNbMoTaW 
alloy as predicted by the calculations in the equilibrium and 
non-equilibrium states (Supplementary Table S1 and Fig. 2). These re
sults suggested that the reduced ΔTl− s suppresses elemental segregation. 

Fig. 4 shows the results of the scanning transmission electron mi
croscopy (STEM) and high-resolution TEM (HRTEM) observations for 
the inter-dendrite and dendrite regions of Ti1(NbMoTa)2W0.5 alloy. The 
dendrite and inter-dendrite regions exhibit a uniform elemental distri
bution, indicating solid solution formation (Fig. 4(a1–a6) and (b1–b6)). 
The selected area electron diffraction (SAED) patterns represent a single 
BCC phase, which is consistent with the XRD analysis. No additional 
diffractions are observed. This indicates that no precipitate, such as B2, 
is formed in the regions (Fig. 4(a7, b7)). The (110) d-spacing measured 
from HRTEM images is 0.23 nm in both regions, indicating the sup
pression of segregation in the regions (Fig. 4(a8, b8)). Upon converting 
the d-spacing to a lattice constant, the resulting value is 0.325 nm, which 
agrees with the measurement obtained through XRD (a = 0.324 nm). 
These results confirmed the single phase of Ti1(NbMoTa)2W0.5 alloy 
with suppressed segregation. 

Table 1 
Thermodynamic parameters of the TiNbMoTaW and Ti1(NbMoTa)2W0.5 alloys.  

Alloys ΔSmix/R ΔHmix [kJ/mol] δ [%] VEC ΔχAllen [%] ΔTm [%] ΔTsingle [K] ΔTl− s [K] 

TiNbMoTaW 1.61 -5.3 2.75 5.2 3.6 20.0 2287.5 81.9 
Ti1(NbTaMo)2W0.5 1.51 -4.6 2.53 5.2 3.6 15.7 2479.9 22.2  
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Fig. 5(a) shows the compression test results, indicating the rela
tionship between the true strain and true stress at 25℃ for both alloys. 
The yield stress of the TiNbMoTaW alloy is 1211±52 MPa, which is 
higher than that of Ti1(NbMoTa)2W0.5 alloy (1128±15 MPa). TiNbMo
TaW alloy exhibits a fraction strain of 5.8±0.2 %, whereas Ti1(NbMo
Ta)2W0.5 alloy exhibits a significantly higher fracture strain up to 9.1 

±0.1 %. BCC-structured HEAs show higher ductility at smaller VEC 
values [27]. The VEC value for the designed composition (VEC=5.2) is 
the same for both alloys. Additionally, both alloys have similar grain 
sizes (Supplementary Fig. S3). Therefore, the enhanced ductility of 
Ti1(NbMoTa)2W0.5 alloy is attributed to the suppression of segregation, 
leading to a more uniform stress distribution during deformation [41]. 
Fig. 5(b) shows the correlation between the calculated yield strength 
(σcal.

y ) and experimental yield strength (σexp.
y ) for both alloys when 

considering the solid solution strengthening (SSS) effect (Δσss) as a 
strengthening mechanism. Because both alloys were fabricated by 
arc-melting without deformation, dislocation strengthening was not 
considered. Moreover, there was no precipitation formation according 
to the XRD result (Fig. 3(a)); thus, precipitation strengthening was not 
relevant. Furthermore, the effect of grain-boundary strengthening was 
relatively small because of the large grain size and no significant dif
ference in the alloys (Supplementary Fig. S3 and Supplementary 
Table S3). Based on the Hall–Petch relationship explained in Appendix 3 
of the Supplementary information, the effect of grain-boundary 
strengthening (ΔσG) was calculated as 44.7 MPa and 43.4 MPa in the 
TiNbMoTaW and Ti1(NbMoTa)2W0.5 alloys, respectively. Therefore, in 
this study, SSS was considered as the main strengthening mechanism. 
Δσss was characterized using the model proposed by Senkov et al., which 
considers the interaction between HEA atoms in a BCC structure [42]. 
This model considers the atomic radius misfit (δi) and shear modulus 
misfit (ή i) due to the multi-component nature of the HEA. This is 
expressed as follows [42] 

δi =
9
8
∑

Xjδij (2)  

ηi =
9
8
∑

Xjηʹ
ij (3) 

Here, δij represents the difference in the atomic radii between ele
ments i and j. ηʹ

ij is related to ηij, where ηij = 2
(
Gi − Gj

)
/
(
Gi +Gj

)
is the 

difference in shear modulus between elements i and j. Additionally, ri, rj, 
Gi and Gj are the atomic radii and shear modulus of elements i and j, 
respectively. Xj denotes the mole fraction of the i-th element. The Δσss 

for a BCC-structured HEA is expressed as follows [43]. 

Δσss = BiXi
2/3 (4)  

Bi = 3Gεi
4/3Z (5)  

G =
∑

GiXi (6)  

εi =
(
ηʹ

i
2
+ α2δi

2)1/2 (7)  

ηʹ
i = ηi/(1+ |ηi| /2) (8)  

α in Eq. (7) indicates the difference in the interaction forces between the 
screw and edge dislocations and solute atom. For screw dislocations, the 
value of α is in the range of 3 − 16 and for edge dislocations, α ≥16 [44]. 
For BCC-structured HEAs, α=16 is often accepted because edge dislo
cations impact SSS more than screw dislocations [43]. Z is a fitting 
constant that was statistically determined as Z = 0.0074 [43]. Finally, 
Δσss (Eq. (4)) can be simplified as follows [43]. 

Δσss =
G
45

(∑
εi

2Xi

)2/3
(9) 

Therefore, the calculated yield strength, σcal.
y is expressed as follows. 

Fig. 2. Non-equilibrium solidification of the (a1) TiNbMoTaW and (b1) Ti1(NbMoTa)2W0.5 alloys evaluated using the Scheil–Gulliver model. (a2, b2) Mole fraction 
of X in liquid, and (a3, b3) mole fraction of X in BCC (X = Ti, Nb, Mo, Ta, W). 
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σcal.
y = Δσss +

(
σy
)

mix (10) 

Here, 
(
σy
)

mix denotes the nominal yield strength, calculated as 
(
σy
)

mix 
=

∑(
σy
)

iXi. 
(
σy
)

i is the yield strength of the i-th element. Both alloys 
exhibited similar values of 

(
σy
)

mix. However, TiNbMoTaW alloy 
exhibited a higher value of Δσss. This is because of the influence of shear 
modulus mismatch (G) in Eq. (6) (GTiNbMoTaW=87.7 GPa, 
GTi1(NbMoTa)2W0.5=78.7 GPa) and δ on SSS because δ plays a prominent 
role in SSS. However, when it exceeds a certain threshold, it can promote 
the formation of intermetallic compounds [20,32]. Therefore, carefully 
selecting an appropriate δ during HEA designing (δ ≤ 6.6 in the present 
study) is essential to achieve simultaneous phase stability and SSS. 

In conclusion, we successfully developed a novel Ti1(NbMoTa)2W0.5 
alloy with excellent ductility and strength using thermodynamic pa
rameters and CALPHAD. The Ti1(NbMoTa)2W0.5 alloy exhibited a 
single-phase BCC structure and successfully suppressed segregation by 

minimized ΔTl− s and greater ΔTsingle, corresponding to CALPHAD sim
ulations. It had higher room-temperature ductility than the TiNbMoTaW 
alloy while maintaining high strength. Because Ti1(NbMoTa)2W0.5 alloy 
does not contain toxic elements [45], it can be proposed not only for 
high-temperature applications but also for biomedical applications 
owing to the expected improvement in corrosion resistance [46–48] and 
biocompatibility [49] with suppressed segregation. The potential of the 
Ti1(NbMoTa)2W0.5 alloy as a refractory material and biomaterial will be 
studied in future work. 
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Fig. 3. Identification of crystal phase and microstructure of the TiNbMoTaW and Ti1(NbMoTa)2W0.5 alloys developed via casting. (a) XRD profiles, (b) partition 
coefficient (K), (c, d) SEM-BSE images, and EDS elemental mapping images of (c1–c6) TiNbMoTaW and (d1–d6) Ti1(NbMoTa)2W0.5 alloys. D and ID represent the 
dendrite and inter-dendrite regions, respectively in (c1) and (d1). 

Table 2 
Chemical compositions of the TiNbMoTaW and Ti1(NbMoTa)2W0.5 alloys at the 
dendrite (D) and inter-dendrite (ID) regions in at.% and their partition coeffi
cient (K = CD/CID)  

Composition (at.%) Ti Nb Mo Ta W 

TiNbMoTaW CD 9.7 17.6 20.2 25.2 27.2  
CID 33.4 25.2 21.4 13.3 6.8  
K 0.3 0.7 0.9 1.9 4.0 

Ti1(NbTaMo)2W0.5 CD 11.1 25.7 26.4 28.7 8.3  
CID 13.2 28.0 27.0 25.5 6.3  
K 0.8 0.9 1.0 1.1 1.3  
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Fig. 4. Bright-field (BF) STEM images from (a1) dendrite and (b1) inter-dendrite regions of the Ti1(NbMoTa)2W0.5 alloy; corresponding elemental distribution maps 
(a2–a6, b2–b6) obtained via STEM-EDS. SAED patterns obtained from (a7) dendrite and (b7) inter-dendrite regions along the [001] direction and intensity profile 
along the line (inset). HRTEM images of the (a8) dendrite and (b8) inter-dendrite regions in the [001] direction. 

Fig. 5. (a) True stress-true strain curves obtained from the compression test at 25℃ on the TiNbMoTaW and Ti1(NbMoTa)2W0.5 alloys. (b) Plastic elongation and 
comparisons between the calculated and experimentally obtained yield stress values. Combined contributions of the SSS (Δσss) and nominal yield stress (

(
σy
)

mix). 
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