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Abstract

Custom-made implants have recently gained attention in veterinary medicine because of

their ability to properly fit animal bones having a wide variety of shapes and sizes. The effect

of custom-made implants on bone soundness and the regeneration process is not yet clear.

We fabricated a 3D printed Ti-6Al-4V custom-made bone plate that fits the shape of the dog

radius, and placed it into the radius where an osteotomy had been made. The preferential

orientation of the apatite c-axis contributes to the mechanical integrity of the bone and is a

reliable measure of bone quality. We determined this parameter as well as the bone shape

and bone mineral density (BMD). The bone portion which lies parallel to the bone plate

exhibited bone resorption, decreased BMD, and significant degradation of apatite orienta-

tion, relative to the portion outside the plate, at 7 months after the operation. This demon-

strates the presence of stress shielding in which applied stress is not transmitted to bone

due to the insertion of a stiff bone plate. This reduced stress condition clearly influences the

bone regeneration process. The apatite orientation in the regenerated site remained differ-

ent even after 7 months of regeneration, indicating insufficient mechanical function in the

regenerated portion. This is the first study in which the apatite orientation and BMD of the

radius were evaluated under conditions of stress shielding in dogs. Our results suggest that

assessment of bone repair by radiography can indicate the degree of restoration of BMD,

but not the apatite orientation.

Introduction

Bone fractures of the radius and ulna are one of the most frequent injuries in dogs [1]. In par-

ticular, toy breed dogs often fracture the radius and ulna after jumping or falling, and the
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fracture frequently leads to complications such as delayed union, nonunion, lameness, or

refracture [1–3]. Treatment options for bone fractures of the radius include various surgical

techniques; open reduction with bone plate fixation is the most common treatment in dogs

with radius fractures [1, 4].

Custom-made implants are becoming increasingly important in veterinary medicine for

better bone reconstruction [5, 6]. Variations in skeletal size and shape between animals and

breed are much larger than that among human patients. It may therefore be more desirable to

apply an implant that matches the individual skeleton than to select a similar size from stan-

dard products, so as to prevent mismatches in size and shape between the patient skeleton and

the implant. The bone regeneration process and bone soundness following a custom-made

implant to a fractured site has not been sufficiently evaluated in veterinary medicine.

Regeneration of bone fracture sites has generally been evaluated by radiography. Radiogra-

phy can determine the degree of morphological regeneration at a bone fracture site, but cannot

evaluate the extent of regeneration of bone mechanical function. Bone mechanical function

can be attributed to the orientation of the mineral and organic constituent phases of biological

apatite crystals and type I collagen fibers [7–11]. Bone apatite and collagen have specific crys-

tallographic textures which depend on the type of bone [12], and apatite material exhibits

anisotropy in its intrinsic mechanical properties, such as Young’s modulus [13, 14]. Recently,

the degree of directionality of the apatite c-axis has been recognized as an indicator of bone

mechanical function [7, 9, 11], because the Young’s modulus along the c-axis is greater than

along the a-axis [13, 14]. Indeed, the preferential orientation of apatite is reported to decrease

in some abnormal conditions, degrading the mechanical function of the bone [15–18]. Apatite

orientation is therefore a potentially important index of bone quality in veterinary medicine.

The most important factor affecting apatite orientation and related mechanical function is

mechanical stress experienced by the bone. The apatite orientation of regenerated bone

depends on the magnitude of the applied stress, for instance [7]. Moreover, the orientation

deteriorates where the stress is reduced [19]. Bone plate fixation is a typical bone fracture treat-

ment in veterinary medicine, and reduces mechanical stress, a phenomenon known as stress

shielding [20, 21]. Stress shielding induced by insertion of the bone plate can cause refracture

of the bone after the plate is removed in humans [22], which might be at least partly responsi-

ble for degradation of the apatite orientation along the principally direction of loading [23]. In

dogs, stress shielding has been recognized as a cause of complications such as delayed union or

refracture. The preferential apatite orientation has been studied in dogs with hip implants [24]

or tooth root implants [25], but no studies have been made of restoration of the preferential

apatite orientation at the site of a bone fracture treated with a bone plate in dogs.

In the present study, the preferential orientation of the apatite c-axis was determined in

dogs with an experimental bone fracture of the radius, which was fixed with a custom-made

3D printed bone plate. The restoration of the bone mineral density (BMD) was also studied

and compared with the apatite orientation.

Materials and methods

Experimental animals

Four healthy beagles (females, 2–5 years old, 7.8–10.8 kg) were used in this study. The dogs

belonged the kennel of Research Center for Experimental Animal Science of Osaka Prefecture

University. The dogs were considered healthy based on their medical history and physical

examination. The study was conducted according to the guidelines of the Experimental Ani-

mal Committee of Osaka Prefecture University and was approved by the Experimental Animal

Committee of Osaka Prefecture University (Permit number 29–104).
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Planning and printing of implant

Custom-made 3-dimensional (3D) printed bone plates were designed using in silico analysis of

images from preoperative computed tomography (CT) of a beagle. The data was acquired

using a 16-slice scanner at 0.5-mm intervals (Activion 16, Toshiba, Tokyo, Japan). These high-

resolution images were transmitted to the medical device manufacturer (Athena Pet, Soft

Cube, Osaka, Japan), where the virtual cages and lattice structures were transmitted into a 3D

computer-aided design (CAD) model. After the patient’s CT data had been integrated with the

CAD model, the shape of the bone plate was modified to match the distal part of the radial

diaphysis of the dog, and implant placement was simulated in silico to check the accuracy.

Next, 3D stereolithography (STL) print files were prepared from the CAD models (Fig 1A),

from which the implants were built through a powder bed type 3D printer. Medical-grade Ti-

6Al-4V ELI (Extra Low Interstitials) powder was purchased from EOS (Munich, Germany),

and the bone plate was fabricated in a layer-by-layer manner on the basis of the STL model

using a selective laser melting (SLM) system (M 290, EOS, Munich, Germany). The custom-

made 3D printed bone plate is shown in Fig 1B.

Experimental procedure

The dogs were injected subcutaneously with atropine sulfate (0.025 mg/kg, Fuso Pharmaceuti-

cal Industries, Osaka, Japan) and robenacoxib (0.2 mg/ kg, Onsior, Elanco Japan, Tokyo,

Japan) before anesthesia. General anesthesia was induced by intravenous administration of

propofol (6 mg/kg, Intervet, Osaka, Japan), following intravenous injection of midazolam (0.2

mg/kg, Dormicum, Astellas Pharma, Tokyo, Japan) and butorphanol (0.2 mg/kg, Vetorphale,

Meiji Seika Pharma, Tokyo, Japan). An endotracheal tube was placed into the trachea to facili-

tate control of respiration. Anesthesia was maintained with 1.5–2.0% isoflurane (Mylan

Seiyaku, Tokyo, Japan) and oxygen. Cefazolin (30 mg/kg, Cefamezin α, LTL Pharma, Tokyo,

Japan) was administered intravenously prior to the operation. An incision was made through

the skin and subcutaneous tissue so as to expose the radial diaphysis. An experimental trans-

verse fracture of the right or left radial diaphysis was made with a surgical micro saw (Naka-

nishi, Tochigi, Japan) at the distal position of the radial diaphysis, and then was fixed using the

Fig 1. Custom-made 3D printed bone plate. (A) The shape of the designed bone plate. (B) The custom-made 3D

printed bone plate. The plate was designed to contact the bone only via the parts of the screw holes. The screw holes

were designed as a hemispherical shape fit for the screw head.

https://doi.org/10.1371/journal.pone.0237678.g001
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custom-made 3D printed bone plate and titanium screws (Platon Japan, Tokyo, Japan). Subcu-

taneous tissue and skin closure were carried out by routine procedures using 4–0 synthetic

absorbable suture materials (Monosyn, B. Braun Aesculap Japan, Tokyo, Japan) and skin sta-

ples (Manipler AZ, Alfresa Pharma, Osaka, Japan). After the operation, the dogs were treated

with cefazolin and meloxicam (0.1 mg/kg, Boehringer Ingelheim Animal Health Japan, Tokyo,

Japan). No casts were applied after the operation.

The dogs were allowed to freely perform weight-bearing activities in the cage after the oper-

ation. Radiographs of the forelimb were taken at 1, 3, 5 and 7 months after the operation for

assessment of the healing process of the fracture of the radius (Fig 2). The dogs were sacrificed

by an intravenously administered overdose of potassium chloride with deep anesthesia at 7

months after the operation.

Radiography of the removed radii

The radii were removed with the neighboring ulnas and immersed in 70% ethanol. Soft X-ray

photographs were taken using XIE (Chubu Medical, Mie, Japan), at 30 kV and 30 μA radiation

(Fig 3).

Bone morphology observation

The screws and bone plate were removed with care and the radius was isolated from the neigh-

boring ulna. Micro-computed tomography (μCT) (SMX-100CT, Shimadzu, Kyoto, Japan) was

used to produce bone images with a spatial resolution of 57 μm on each side, so as to observe

the cross-sectional morphology of the radius. Cross-sectional images were produced at 10 sites

(positions 1 to 10; see Fig 4A).

Fig 2. Representative craniocaudal and mediolateral radiographic views before and after surgery. Radiographs of

forelimb taken pre-surgery, post-surgery (day 0), and 1, 3, 5 and 7 months after the operation.

https://doi.org/10.1371/journal.pone.0237678.g002

PLOS ONE Impaired bone quality under stress shielding following fixing of a fracture of the radius in dogs

PLOS ONE | https://doi.org/10.1371/journal.pone.0237678 September 2, 2020 4 / 12

https://doi.org/10.1371/journal.pone.0237678.g002
https://doi.org/10.1371/journal.pone.0237678


PLOS ONE Impaired bone quality under stress shielding following fixing of a fracture of the radius in dogs

PLOS ONE | https://doi.org/10.1371/journal.pone.0237678 September 2, 2020 5 / 12

https://doi.org/10.1371/journal.pone.0237678


Evaluation of BMD

Volumetric BMD was measured at 10 points (positions 1 to 10; see Fig 4A) in the radius in

70% ethanol, using an XCT Research SA+ system (Stratec Medizintechnik, Birkenfeld, Ger-

many) at 50.7 kV and 0.276 mA with a resolution of 80 × 80 × 460 μm. The BMD of the corti-

cal bone region having a BMD value of 690 mg/cm3 or higher [26] were calculated.

Analysis of apatite c-axis orientation

The apatite c-axis orientation was analyzed by a microbeam X-ray diffractometer (μXRD) sys-

tem (R-Axis BQ, Rigaku, Tokyo, Japan) equipped with a transmission-type optical system, and

an imaging plate (storage phosphors) (Fuji Film, Tokyo, Japan) placed behind the specimen.

Mo-Kα radiation of wavelength 0.07107 nm was generated at a tube voltage of 50 kV and tube

current 90 mA. The distance between the detector and the X-ray focus of the specimen was

127.4 mm. The pixel size of the imaging plate was 100 μm × 100 μm. The incident beam was

focused on a beam spot of diameter 800 μm by a double-pinhole metal collimator and radiated

vertically to the long axis of the bone so as to capture diffraction information along the bone

axis. The incident X-ray was transmitted along the craniocaudal axis from the cranial surface;

diffraction data were collected for 180 s.

From the resulting diffraction intensity pattern (Debye ring) (see Fig 5), the two representa-

tive diffraction peaks for apatite, (002) and (310), were used to analyze the apatite c-axis orien-

tation, as described previously [15, 19]. In long bones, the apatite c-axis orients preferentially

along the bone longitudinal axis [12] aligned with the collagen matrix [27]. We therefore ana-

lyzed the diffraction information along the long axis of the radius. The upper and lower parts

of the Debye ring correspond to the radial long axis. Diffraction intensities were integrated azi-

muthally over a range of 100 pixels to obtain an X-ray diffraction profile. The degree of prefer-

ential orientation of the c-axis in the apatite crystals was determined as the relative intensity

ratio of the (002) diffraction peak to the (310) peak in the X-ray profile. This is an appropriate

Fig 3. Radiographs of forelimb with a bone plate at 7 months after the operation. An arrow indicates the

osteotomized position.

https://doi.org/10.1371/journal.pone.0237678.g003

Fig 4. μCT examination of the removed radii. (A) Positions at which μCT images were taken. (B) μCT cross-sections

at each position, 7 months after the operation.

https://doi.org/10.1371/journal.pone.0237678.g004
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index for evaluating apatite orientation [12, 28] and bone mechanical function (Young’s mod-

ulus) [7]. The intensity ratios calculated from the upper and lower parts of the Debye ring

were averaged. Randomly-oriented hydroxyapatite (NIST #2910: calcium hydroxyapatite)

powder had an intensity ratio of 0.8; consequently, detected values >0.8 indicate definite

anisotropic apatite c-axis orientation in the radial long axis.

Statistical analysis

All data are presented as mean ± standard deviation (SD). Statistical comparisons were per-

formed using one-way ANOVA and Tukey’s multiple comparison test. A value of P< 0.05

was considered statistically significant. All statistical analyses used SPSS 25 (SPSS Japan Inc.,

Tokyo, Japan) for Microsoft Windows.

Results

In all dogs, fractures of the radial diaphysis were fixed with the custom-made 3D printed bone

plates as planned. None of the dogs exhibited any abnormalities in gait at 1 week after the

operation. Fig 2 shows radiographs of the forelimb. Callus formation was observed at 1 month

after the operation, and no fracture line could be observed at 5 months after the operation in

any dog. Fig 3 shows a high-resolution radiograph taken at 7 months postoperatively. The frac-

ture line is completely invisible, and reconstruction of the cortical bone and medullary marrow

cavity is evident. μCT cross-sectional images (Fig 4) also reveal formation of cortical bone and

marrow cavity at the osteotomized site (position 5 in Fig 4B).

The BMD and the degree of preferential apatite c-axis orientation of the radii at 7 months

after the operation are shown in Fig 6. In bone positions 1 to 9 which lie parallel to bone plate,

either BMD or the degree of preferential apatite orientation was significantly less than in bone

position 10, which is located outside the plate. The BMD values of the regenerated site (posi-

tion 5) were comparable to those of the surrounding bone site (Fig 6A). The preferential apa-

tite c-axis orientation in the regenerated site (position 5) was significantly degraded (Fig 6B),

indicating that recovery of apatite orientation is not synchronized with that of BMD. Fig 7

schematically illustrates the variations in the apatite orientation and BMD in the intact portion

without influences of stress shielding, in the stress shielded portion beneath the bone plate,

and in the regenerated portion under stress shielding conditions.

Fig 5. Method for analyzing apatite c-axis orientation. (A) Beam path of X-ray. (B) μXRD patterns (Debye rings);

the vertical direction (upper and lower parts) corresponds to the radial long axis.

https://doi.org/10.1371/journal.pone.0237678.g005
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Discussion

In this study, we evaluated the changes and restoration of bone density and bone quality in the

canine radius with a bone fracture fixed with a custom-made Ti-6Al-4V 3D printed bone

plate. The custom-made plate appeared to cause stress shielding on the bone portion lying par-

allel to the stiff bone plate. A decrease in BMD and deterioration of bone quality occurred

beneath the bone plate, and impaired restoration of bone quality was observed in the osteoto-

mized site.

In the non-osteotomized site beneath the custom-made bone plate, significant degradation

of bone material, characterized by decreased BMD and apatite orientation, was found. More-

over, bone resorption was observed in some μCT cross-sectional images (positions 3 and 7 in

Fig 4B). These bone degenerative changes clearly indicate the presence of stress shielding. Pre-

vious studies have determined that reduced axial stress degrades the preferential apatite c-axis

orientation in the loading direction of long bones [19, 23]. The apatite orientation, which is a

recognized bone quality parameter, correlates with bone strength more strongly than BMD in

the regenerated and pathological bones [7, 11]. Our results therefore indicate that bone

Fig 6. BMD and preferential apatite c-axis orientation of the radii analyzed at the position shown in Fig 4A. (A)

Variation in BMD and (B) variation in the degree of preferential apatite c-axis orientation along the radial long axis as

a function of bone position. Gray and white symbols represent the value in the intact (free from stress shielding) and

regenerated positions, respectively. a: P< 0.05 vs position 5. b: P< 0.05 vs position 10.

https://doi.org/10.1371/journal.pone.0237678.g006

Fig 7. Schematic drawing showing the variations in the apatite orientation and BMD in the intact, in the stress

shielded, and in the regenerated portions under stress shielding conditions.

https://doi.org/10.1371/journal.pone.0237678.g007
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strength deteriorates more severely than is expected from the decrease in BMD by stress

shielding.

In the osteotomized site (position 5 in Fig 6), the BMD recovered to the same extent that

the surrounding portion suffered from stress shielding. In contrast, the apatite orientation

along the bone axis had scarcely recovered even after 7 months. It has been reported that the

restoration of apatite orientation takes longer than the recovery of BMD, but, in the rabbit

fracture model, the apatite orientation and bone strength was normalized after 6 months [7].

In the early stage of bone regeneration, a bone (callus) is formed that is less oriented [7, 28]

and less mechanically integrated [7]. The formation of the bone marrow cavity and cortical

bone in the regenerated site proves that bone replacement has taken place by remodeling activ-

ity, which is necessary to restore the apatite orientation to the normal condition [7]. The unre-

covered apatite orientation observed in the regenerated portion would be caused by bone

regeneration under the reduced stress conditions due to bone plate implantation. In other

words, stress shielding as a result of a custom-made 3D printed bone plate is liable to prevent

the restoration of preferential apatite orientation at a bone fracture site, and might cause

refracture [22]. This unrecovered apatite orientation under stress shielding might be influ-

enced by the osteon orientation. The orientation of osteon in which collagen preferentially ori-

ents along its longitudinal axis [29] corresponds with the directions of the maximum principal

stress [30, 31]. Under the stress shielding, the direction of osteon would be disturbed, which

further led to the low degree of collagen orientation. Since the apatite crystallizes on collagen

so that its c-axis aligns with the long axis of collagen in the presence of osteocalcin [17], the

apatite c-axis orientation degrades by inheriting degraded collagen orientation. With physio-

logical stress during bone regeneration, the apatite orientation is reliably restored [7, 28]. The

present study determined, for the first time, the apatite orientation and BMD of the radius

under stress shielding conditions in dogs. Our results suggest that radiography can evaluate

BMD but not the extent of restoration of the apatite orientation.

We used a custom-made 3D printed bone plate to fix the bone fracture of the radius; the

bone plates were made from medical-grade Ti-6Al-4V powder, which is a general material

available for bone implants. Our results indicate that Ti-6Al-4V implants may not be suitable

for restoration of apatite orientation at bone fracture sites, although radiographic findings sug-

gest restoration of bone fracture in dogs. For restoration of apatite orientation at a bone frac-

ture site, it is possible that commercial or custom-made implants made from general materials,

including pure titanium and Ti-6Al-4V alloy, are too stiff to exert adequate anisotropic stress

on a fracture site in dog bones. Bone implants with less rigidity may be better for suppressing

stress shielding [32], leading to better restoration of apatite orientation and mechanical func-

tion at a bone fracture site. Future studies should involve low-rigidity materials so as to deter-

mine their benefit in reducing bone degradation due to stress shielding. The most promising

strategy for both suppression of stress shielding and shape customization is the creation of

beta-type Ti alloy-single crystalline implants, utilizing a SLM 3D printer [33]. The Young’s

modulus of a single crystalline beta-type Ti-15Mo-5Zr-3Al alloy has an anisotropic Young’s

modulus; the lowest Young’s modulus is very close to that of bone along the specific crystallo-

graphic direction [34]. In addition, SLM can provide implants adapted to the bone shape of

each patient [35], as in the present.

This study has some limitations. First, apatite orientation in the regenerated radii was

examined only at 7 months after fracture fixation. To estimate the appropriate rigidity of bone

implants, further study would helpful to determine the change with time of the apatite orienta-

tion at a bone fracture site. Second, because anisotropic stress on the forearm is divided

between the radius and the ulna, the influence of the ulna on support of skeletal anisotropic

stress was not taken into account in this study.
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In conclusion, fracture fixation with a custom-made 3D printed bone plate failed to restore

apatite orientation at the osteotomized site of the radius in a dog, although restoration of BMD

at the bone fracture site recovered to match the surrounding portion.
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