
 
 

 

 
J. Imaging 2023, 9, 90. https://doi.org/10.3390/jimaging9050090 www.mdpi.com/journal/jimaging 

Article 

Big-Volume SliceGAN for Improving a Synthetic 3D  
Microstructure Image of Additive-Manufactured  
TYPE 316L Steel 
Keiya Sugiura 1, Toshio Ogawa 1, Yoshitaka Adachi 1,*, Fei Sun 1, Asuka Suzuki 1, Akinori Yamanaka 2,  
Nobuo Nakada 3, Takuya Ishimoto 4, Takayoshi Nakano 5 and Yuichiro Koizumi 5 

1 Department of Material Design Innovation Engineering, Nagoya University, Nagoya 464-8603, Japan 
2 Division of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology,  

Tokyo 184-8588, Japan 
3 School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 226-8503, Japan 
4 Department of Materials Design and Engineering, Toyama University, Toyama 930-8555, Japan 
5 Division of Materials and Manufacturing Science, Osaka University, Osaka 565-0871, Japan 
* Correspondence: adachi.yoshitaka@material.nagoya-u.ac.jp; Tel.: +81-52-789-4858 

Abstract: A modified SliceGAN architecture was proposed to generate a high-quality synthetic 
three-dimensional (3D) microstructure image of TYPE 316L material manufactured through addi-
tive methods. The quality of the resulting 3D image was evaluated using an auto-correlation func-
tion, and it was discovered that maintaining a high resolution while doubling the training image 
size was crucial in creating a more realistic synthetic 3D image. To meet this requirement, modified 
3D image generator and critic architecture was developed within the SliceGAN framework. 

Keywords: SliceGAN; generative adversarial network; synthetic 3D image; additive manufacturing; 
autocorrelation function 
 

1. Introduction 
The reconstruction of three-dimensional (3D) microstructures can enhance our un-

derstanding of the properties of a material. Traditionally, serial sectioning [1,2] and to-
mography [3] have been used to generate 3D microstructure images. However, these 
methods are time-consuming and require specialized equipment. Recently, Kench and 
Cooper [4] introduced a new approach for efficient 3D microstructure reconstruction us-
ing a generative adversarial network (GAN) called SliceGAN. There are two primary 
types of image generation algorithms: adversarial generation network (GAN) [5] and var-
iational autoencoder [6]. SliceGAN produces a synthetic 3D image from one or three two-
dimensional (2D) images for isotropic and anisotropic microstructures, respectively. 

SliceGAN consists of three components: a 3D image generator (3D generator), a critic 
(similar to a discriminator in conventional GAN [5]), and a slicer. The 3D generator creates 
a 3D image from noise (latent variables), which is then sliced into three perpendicular 
planes by the slicer. The critic compares the sliced images with 2D images cropped from 
an original microstructure image, and updates the weight coefficient in the transpose con-
volution matrix of the 3D generator accordingly. SliceGAN runs on a high-performance 
graphics processing unit in Pytorch frame and GPGPU mode. 

In the original SliceGAN architecture proposed by Kench and Cooper [4], 64 sets of 
latent variables in the format of 4 × 4 × 4 (voxel) were used. These latent variables were 
processed by a transpose convolution with five layers, resulting in a 3D image with di-
mensions of 64 × 64 × 64 voxels and three channels. The 2D images sliced from the gener-
ated 3D image were compared with 2D images cropped from the original image using the 
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critic of Wasserstein GAN with Gradient Penalty (WGAN-GP) [7]. The weight coefficient 
of the 3D generator was then updated based on the result. The high performance of Slice-
GAN is partially due to the architecture of WGAN-GP. This process is repeated until a 
given epoch number is reached. The resolution of a 3D image generated by the default 
SliceGAN is sufficient for a binary image [8], but inadequate for a grayscale image. Since 
actual microstructural photographs are grayscale images rather than binary images, it 
would be more useful in material research to improve the quality of a SliceGAN-gener-
ated image using grayscale 2D images. In particular, generating a large representative 
volume while maintaining high resolution is beneficial for reproducing a representative 
microstructure. 

The quality of a synthetic 3D microstructure image generated by SliceGAN may suf-
fer from image degradation caused by the small cropped image size (64 × 64 pixels) and/or 
limited layers of the transpose convolution. Therefore, it is necessary to consider enlarging 
the cropped image size and/or modifying the transpose convolution architecture. In addi-
tion, the quality of a 3D image generated by SliceGAN should be evaluated quantitatively 
to achieve better results. 

To evaluate the performance of SliceGAN, the quality of the generated 3D image 
should be assessed quantitatively. However, there is currently little established method 
for evaluating grayscale 3D images. Kench and Cooper [4] suggested a possible approach 
to measure the similarity between an experimentally obtained 3D image and a synthetic 
3D image generated by SliceGAN. They used tomographic 3D data collected from a Li-
ion MMC cathode sample and trained SliceGAN with a random subset of 2D sections of 
the 3D image. They then evaluated the similarity between the real and synthetic 3D im-
ages based on volume fraction, relative surface area, and relative diffusivity. This assess-
ment demonstrated that SliceGAN can potentially generate a 3D image that is similar to 
the ground truth. However, their evaluation only used binary 3D images, and the quality 
of synthetic 3D images with grayscale sections is still under debate. 

To investigate the anisotropic microstructure of additive-manufactured TYPE 316L 
stainless steel, a modified architecture of SliceGAN is proposed in this study to enhance 
the quality of fake 3D microstructure images. Furthermore, the quality of these images is 
quantitatively evaluated. 

2. Modified Architecture of SliceGAN 
Tables 1 and 2 and Figure 1 compare the architectures of the original SliceGAN (re-

ferred to as model_64) [4] and the modified SliceGAN (model_128). In the original 
model_64, 64 × 64 pixel images are cropped from the original 2D image and compared 
with 64 × 64 pixel images sliced from a generated fake 3D image by the critic. The original 
model uses five layers of transpose convolution to generate a 1 channel × 64 × 64 × 64 voxel 
3D fake image from 64 sets of latent variables in the format of 4 × 4 × 4. 

Table 1. Architecture of model_64 SliceGAN. 

Generator 

Layer Function Kernel, Stride, Padding Output Shape 

Input - - 64 × 4 × 4 × 4 

1 

ConvTranspose3d 4, 2, 2 

512 × 6 × 6 × 6 BatchNorm3d - 

ReLU - 

2 

ConvTranspose3d 4, 2, 2 

256 × 10 × 10 × 10 BatchNorm3d - 

ReLU - 
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3 

ConvTranspose3d 4, 2, 2  

BatchNorm3d - 128 × 18 × 18 × 18 

ReLU -  

4 

ConvTranspose3d 4, 2, 2 

64 × 34 × 34 × 34 BatchNorm3d - 

ReLU - 

5 
ConvTranspose3d 4, 2, 3 

1 × 64 × 64 × 64 
tanh - 

Critic 

Layer Function Kernel, Stride, Padding Output Shape 

Input - - 1×64×64 

1 
Conv2d 4, 2, 1 

64×32×32 
ReLU - 

2 
Conv2d 4, 2, 1 

128×16×16 
ReLU - 

3 
Conv2d 4, 2, 1 

256×8×8 
ReLU - 

4 
Conv2d 4, 2, 1 

512×4×4 
ReLU - 

5 Conv2d 4, 2, 0 1×1×1 

Table 2. Architecture of model_128 SliceGAN. 

Generator 

Layer Function Kernel, Stride, Padding Output Shape 

Input - - 64 × 4 × 4 × 4 

1 

ConvTranspose3d 4, 2, 2 

512 × 6 × 6 × 6 BatchNorm3d - 

ReLU - 

2 

ConvTranspose3d 4, 2, 2 

256 × 10 × 10 × 10 BatchNorm3d - 

ReLU - 

3 

ConvTranspose3d 4, 2, 2  

BatchNorm3d - 128 × 18 × 18 × 18 

ReLU -  

4 

ConvTranspose3d 4, 2, 2 

64 × 34 × 34 × 34 BatchNorm3d - 

ReLU - 

5 
ConvTranspose3d 4, 2, 2 

32 × 66 × 66 × 66 
BatchNorm3d - 
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ReLU - 

6 
ConvTranspose3d 4, 2, 3 

1 × 128 × 128 × 128 
tanh - 

Critic 

Layer Function Kernel, Stride, Padding Output Shape 

Input - - 1 × 128 × 128 

1 
Conv2d 4, 2, 1 

32 × 66 × 66 
ReLU - 

2 
Conv2d 4, 2, 1 

64 × 32 × 32 
ReLU - 

3 
Conv2d 4, 2, 1 

128 × 16 × 16 
ReLU - 

4 
Conv2d 4, 2, 1 

256 × 8 × 8 
ReLU - 

5 
Conv2d 4, 2, 1 

512 × 4 × 4 
ReLU - 

6 Conv2d 4, 2, 0 1 × 1 × 1 

 

 
Figure 1. Architecture of model_64 and model_128 SliceGAN. 

In contrast, the modified model_128 uses 128 × 128 pixel images cropped from the 
original 2D image and compared with 128 × 128 pixel images sliced from a generated fake 
3D image by the critic. Enlarging the cropped image is beneficial because it contains a 
large representative volume of elements, maintaining its resolution. The modified model 
uses six layers of transpose convolution to generate a 1 channel × 128 × 128 × 128 pixel 3D 
fake image from 64 sets of latent variables in the format of 4 × 4 × 4. This larger volume 
SliceGAN enhances the quality of the generated 3D fake image because larger images with 
representative features are used in training. 

Figure 2 shows the hyperparameter update process for the 3D generator and critic. 
In one epoch, the critic is trained five times using cropped 2D and fake sliced images, 
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while the 3D generator is trained once. After repeated training, 64 sets of latent variables 
in the format of 18 × 18 × 18 and 10 × 10 × 10 voxel are input to the 3D generators of 
model_64 and model_128, respectively, to obtain a larger 3D synthetic image with a 512 × 
512 × 512 voxel multiplied by 1 channel. Both models use thirty-two subdivided datasets 
(batch size) for generator training, performed only once. Meanwhile, eight subdivided 
datasets are used for critic training, which is repeated five times in one iteration. The op-
timizer used is Adam, as in the original SliceGAN model [4]. 

 
Figure 2. Procedure of a hyperparameter update for the 3D generator and critic. 

This study required the use of a high-end GPU device, the “RTX A6000,” which has 
48 GB of GPU memory, to run the model_128 SliceGAN in the Pytorch framework. On the 
other hand, the GeForce RTX 3090 GPU with 24 GB of memory was sufficient for 
model_64. 

3. 3D Synthetic Image Quality Evaluation 
To assess the quality of the synthetic 3D image generated in this study, a quantitative 

evaluation was performed by comparing it to the original image. The microstructure un-
der investigation was the additive-manufactured TYPE 316L steel, which exhibits a char-
acteristic pattern known as the “crystallographic lamellar microstructure (CLM)” [9]. The 
periodicity of this CLM is a unique fingerprint of the microstructure because it corre-
sponds to the laser scanning region, which has a constant interval of 80 μm. To evaluate 
the periodicity of the CLM, the auto-correlation function (ACF) [10] was used, which has 
an advantage over the fast Fourier transform (FFT) [11] in evaluating imperfect periodic-
ity. 

When an image is periodic, there are regions where the image matches well at a cer-
tain distance shift after the image is shifted from the original image. The ACF expresses 
the relationship between the overlap and staggered distance (called lag) of these images. 
The conventional correlation (rxy) is somewhat modified for ACF because 𝑋 and 𝑌 are 
the same, except for the lag, and is given by the following equation: 𝑟௫௬ ൌ ∑ ൣ௑೔ି௑൧ൣ௒೔ି௒൧  ௌೣௌ೤௡௜ୀଵ   

The equation for conventional correlation uses sample means (𝑋 and 𝑌) and sample 
standard deviations (𝑆௫ and 𝑆௬) and is modified for ACF as 𝑋 and 𝑌 are the same, ex-
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cept for the lag. To compute ACF, two images are shifted along the direction perpendicu-
lar to CLM. Another approach to compare a SliceGAN-generated image with a real image 
is by analyzing the brightness distribution. If the images are similar, the brightness distri-
bution, such as the mean and standard deviation of brightness, should also be similar. 

4. Materials 
In this study, a specimen was prepared using the laser powder bed fusion (LPBF) 

method at Osaka University [12–15]. The LPBF process produces a unique microstructure 
due to the steep temperature gradient and high solidification rate. TYPE 316L powder was 
used, and the powder was scanned by a laser only in the X direction using Scan strategy 
X [12] (Figure 3). Laser power (P), scanning speed (v), and hatching distance were set at 
250 W, 1000 mm/s, and 80 μm, respectively. The microstructure was highly anisotropic 
compared to the dual-phase microstructures of steels [8]. Therefore, a microstructure im-
age was captured by an optical microscope on three perpendicular planes, which were 
used as input for training SliceGAN. It should be noted that the microstructure images 
used in this study were grayscale. Thus, producing a synthetic 3D microstructural image 
from a grayscale 2D image requires improving the spatial resolution of SliceGAN. 

 
Figure 3. Laser scan strategy X (without rotation) [12]. 

5. Discussion 
In Figure 4, we can see 2D microstructure images obtained from three different sec-

tions. Figure 5 shows a pseudo-3D image created by manually combining these three sec-
tions. This pseudo-3D image is helpful for understanding the relationship between the 
three sections and will be compared with a 3D image generated by SliceGAN later on. In 
the YZ section, we observed a melt pool boundary with a scaly appearance and a thin 
layer in the Z-direction that corresponds to the CLM. These CLMs are located at a nearly 
constant pitch that corresponds to the laser hatching distance. Based on the inverse pole 
figure orientation map, the entire region except for CLM has approximately the same ori-
entation. 
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Figure 4. The 2D microstructures obtained from three perpendicular sections. 

 
Figure 5. Pseudo-3D 3D optical microscope (OM) image synthesized by manually combining the 
three perpendicular cross-sectional images. A magnified scanning electron microscope image and 
inverse pole figure map are also shown. 

Figure 6 presents 3D synthetic images generated by model_64 and model_128. The 
sections on the YZ, XY, and XZ planes of the generated 3D images are shown in Figures 7 
and 8. Model_128 produced a higher quality image compared to model_64, particularly 
for CLM, which appears more continuous in the model_128 image than in the model_64 
image. Although a 128 × 128 (pixel) image was used as input for the training of SliceGAN, 
it is surprising that some CLMs appear continuous in the 512 × 512 (pixel) section of the 
model_128 image. To quantitatively evaluate the continuity of CLM observed in Slice-
GAN images, the length of fifty CLMs was measured for each image of model_64 and 
model_128 on the YZ plane. The potential maximum length of CLM is 512 (pixel) due to 
the image size. Figure 9 shows that the CLM in the model_128 image is much longer than 
that in the model_64 image. The average lengths of CLM in the image and in model_64 
images are 233 and 83 (pixel), respectively. These findings suggest that enlarging cropped 
images to contain representative features is crucial for improving the quality of synthetic 
3D images. At the same time, a 3D generator must generate a bigger synthetic 3D image 
by increasing transpose convolution layers. However, larger cropped images than 128 × 
128 (pixel) may further improve the quality of synthetic 3D images, but much more GPU 
memory than 48 GB is likely required for processing the image reconstruction. 
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Figure 6. Fake 3D images generated by (a) model_64 and (b) model_128 SliceGAN. 

 
Figure 7. Cross-section images of a 3D image generated by model_64 SliceGAN. As a latent variable, 
a 64 (channel) × 18 × 18 random noise was input into a 3D generator. 
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Figure 8. Cross-section images of a 3D image generated by model_128 SliceGAN. 

As a latent variable, a 64 (channel) × 15 × 15 random noise was input into a 3D gen-
erator. 

 
Figure 9. Length of CLM observed on YZ plane in model_64 and model_128 section images. 

In Figure 10, ACF results for the sectioned model_64 image, sectioned model_128 
image, and the original 2D image are presented. All images were resized to 148 × 148 
(pixels). The signal for model_128 appears steeper than that of model_64, and the first 
peak is located at the lag around 18 pixels, which is consistent with the actual interval of 
CLM. These ACF results suggest that model_128 can produce higher-quality fake 3D im-
ages than model_64. However, when compared to the ACF result for the original image, 
the ACF signal for model_128 is attenuated at larger lags. Indeed, CLM appears to be 
terminated in some regions, even in the sectioned model_128 image, while it is continuous 
in the original image. To further improve the fake 3D image, an input image larger than 



J. Imaging 2023, 9, 90 10 of 12 
 

 

128 × 128 pixels is required, as mentioned above. To achieve such a bigger-volume Slice-
GAN calculation, NVLink, which bridges multi-GPU devices, might be useful. 

 
Figure 10. ACF analysis for the YZ section generated by (a) model_64 and (b) model_128 SliceGAN 
and (c) an original image. 

There are various characterization methods to quantify the metallurgically important 
characteristics of a 2D/3D image, such as grain size, area/volume fraction, particle density, 
connectivity, branching points, periphery, fractal dimension, and preferential direction. 
In addition, persistent homology has recently been used to evaluate more complicated 
patterns [16]. This mathematical approach is very useful in quantifying morphology in 
many fields. However, these methods are mainly applied to binary images. Therefore, in 
this study, we analyzed the density distribution of brightness values (Figure 11). The den-
sity distribution of brightness values for the three images (original, model_64, and 
model_128 images) is considered to be a Gaussian distribution with one peak. The density 
distribution of the Model_128 SliceGAN image is similar to that of the original image, 
while that of the Model_64 SliceGAN image appears to be wider. To examine the bright-
ness distribution more quantitatively, we obtained the mean value and standard deviation 
of brightness for the three images, and the results are presented in Table 3. Both the mean 
value and standard deviation are quite similar between the original image and the 
Model_128 SliceGAN image. The mean and standard deviation of the brightness distribu-
tion of the Model_64 SliceGAN image are slightly larger than those of the original image. 
In the future, a more quantitative analysis of gray-scale 2D/3D images is desired. 

One of RGB values is a kind of grayscale brightness value. Therefore, a high-quality 
synthetic color 3D image generated by SliceGAN seems to be very attractive. Kench and 
Cooper [4] demonstrated that SliceGAN could generate a 3D image from 2D color images 
as well. However, the quality of the color 3D SliceGAN image seems to be not good com-
pared with a binary image. To improve the quality of the color 3D SliceGAN image, “Big-
volume SliceGAN” is likely useful. However, it requires much more GPU memory than 
48 GB and it is beyond the scope of this study. 
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Figure 11. Comparison of brightness distribution between SliceGAN image and original image. 

Table 3. Brightness distribution analysis. 

 Mean Standard Deviation 
Original image 

(YZ section) 0.5001 0.1521 

Model_64 
SliceGAN image  

(YZ section) 
0.5045 ± 0.0067 0.1789 ± 0.047 

Model_128 SliceGAN 
image 

(YZ section) 
0.5007 ± 0.0082 0.1552 ± 0.067 

6. Conclusions 
This study aims to enhance the quality of synthetic 3D microstructural images gen-

erated by SliceGAN for additive-manufactured TYPE 316L steel. The effectiveness of en-
larging the input image for training SliceGAN has been discovered in improving image 
quality. In addition to input image size, a modified 3D generator and critic architecture 
have also been demonstrated. The use of ACF has proven to be an effective method for 
quantitatively evaluating the quality of a generated 3D image. 
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